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Kapitel 1

Einführung

1.1 Vorwort
Vorab möchten wir uns bei Frau Engel entschuldigen. Wir wussten, dass die Dokumentation
maximal 15 Seiten lang sein sollte. Doch bei unserem umfangreichen Projekt, das deutlich aus
dem Ruder gelaufen ist und am Ende ein enormes Maß an Komplexität erreicht hat, war es
schlicht nicht mehr möglich, alles, was passiert ist, sowie die vollständige Logik innerhalb von
15 Seiten unterzubringen. Wir hoffen dennoch, dass alle, die dies lesen, ihren Spaß haben und
vielleicht etwas lernen. Dies ist eine Dokumentation voller Verzweiflung und Hoffnung.

1.2 Eidesstattliche Erklärung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Dokumentation selbstständig
erstellt habe. Der Inhalt stammt ausschließlich von mir, und es wurden keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet. Dieses Dokument wurde lediglich durch eine
KI zur Korrektur (z. B. Grammatik und Stil) gelesen; der gesamte Inhalt basiert jedoch allein
auf meiner eigenen Arbeit. Alle wörtlichen und sinngemäßen Zitate sind gekennzeichnet, und
die gedruckte sowie die elektronische Version stimmen überein. Mir ist bekannt, dass falsche
Angaben strafrechtliche Konsequenzen nach § 156 StGB haben können.

1.3 Einleitung
Das Ziel unseres Projekts war es, einen RISC-V RV32I für den Tang Nano 9K zu implemen-
tieren. Die HDL (Hardware Description Language) unserer Wahl war VHDL, da sie robuster
und typsicherer ist als Verilog.
Vorab dieses Projekt mussten wir jedoch aufgeben, nachdem wir nach zwei Wochen erkannt
hatten, wie aufwändig es tatsächlich ist. In dieser Zeit hätten wir es nicht geschafft, ein Er-
gebnis zu erzielen, das sowohl praktisch vorzeigbar gewesen wäre als auch unseren eigenen
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Ansprüchen genügt hätte.
Also entschieden wir uns, das Projekt zu vereinfachen, indem wir ein Framework nutzten, das
uns viel Arbeit abnahm. Statt alles manuell zu schreiben, mussten wir nur noch definieren,
was wir haben wollten, ergänzt um etwas Logik. Dieses Framework übersetzte unseren Code
anschließend automatisch in Verilog.

1.4 Projektumfeld
Das Projekt fand im Rahmen des IT-Unterrichts im Unterrichtsfeld Prozessautomatisierung
statt. Es wurde sowohl in der Schule als auch im privaten Umfeld aktiv daran gearbeitet.
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Kapitel 2

Analyse

2.1 Zielsetzung / Produktskizze
Die gesteckten Projektziele waren in zwei Hauptkriterien unterteilt. Das erste Kriterium be-
stand in der Entwicklung eines funktionsfähigen System-on-Chip (SoC) auf Basis der RISC-
V-Architektur (RV32I). Der entwickelte SoC sollte in der Lage sein, eigenständig Software
auszuführen, ähnlich wie ein Mikrocontroller, beispielsweise auf einem Arduino-System. Ziel
war es, Programme direkt auf dem SoC auszuführen und über dessen GPIO-Pins externe Hard-
warekomponenten, wie LEDs oder Sensoren, anzusteuern und auszulesen. Damit sollte eine
einfache Schnittstelle zwischen Software und Hardware gewährleistet werden.

Auf architektonischer Ebene war vorgesehen, dass der Prozessor grundlegende CPU-Komponenten
enthält, die die effiziente Ausführung von Programmen ermöglichen. Dazu zählen eine Pipeline-
Architektur für parallele Befehlsverarbeitung, ein Interrupt-Handling-System sowie optionale
Module wie eine Multiply-Divide-Unit (für RV32IM-Erweiterungen), eine Floating-Point-Unit
(FPU) für Gleitkommaoperationen und ein Timer-Subsystem. Darüber hinaus sollte das SoC-
Design über eine klar definierte Speicherhierarchie verfügen, bestehend aus einem Instruction
und einem Data-Memory-Bereich sowie einem Bus-System zur Anbindung externer Periphe-
rie. Zusätzlich sollten Taktgenerierung und Reset-Logik modular realisiert sein, beispielsweise
durch die Nutzung von MMCMs (Mixed-Mode Clock Manager), um verschiedene Taktfrequen-
zen für CPU-Kern und Peripherie bereitzustellen.

Das zweite Hauptkriterium bezog sich auf die physische Implementierung: Der entwickelte
SoC sollte nach erfolgreicher Simulation auch auf realer Hardware lauffähig sein. Konkret
sollte der Chip auf dem gewählten FPGA-Board Tang Nano 9K implementiert und getestet
werden. Dies erforderte die Integration der Hardware in die LiteX-Umgebung, das Generieren
der entsprechenden Bitstream-Dateien sowie die erfolgreiche Übertragung und Inbetriebnahme
des SoCs auf dem FPGA. Hierbei war insbesondere sicherzustellen, dass alle Funktionen, wie

5



Projektdokumentation
Takterzeugung, Speicheranbindung, GPIO-Steuerung und Programm-Upload – sowohl in der
Simulation als auch auf der Zielhardware konsistent funktionieren.

2.2 Begründung der Entscheidung
Das Projekt wurde aus der Intention heraus ausgewählt, eine echte Herausforderung zu schaf-
fen, mit einem Vorhaben, das für die vorgesehene Zeit und das in der Schule vermittelte Wissen
eigentlich nicht erreichbar war.
Ein weiterer Grund für diese Entscheidung war die Motivation, das eigene Wissen zu vertiefen
und zu erweitern. Es war die Wissbegierde, zu verstehen, wie ein Mikrocontroller funktioniert
und wie aufwendig oder einfach es ist, ein solches System selbst zu entwickeln.
Wir wollten kein Projekt umsetzen, das lediglich auf bestehenden Lösungen aufbaut. Statt-
dessen wollten wir die Grundlagen nachvollziehen und ein tieferes Verständnis dafür gewinnen,
wie Hardware und Logik tatsächlich zusammenspielen.

2.3 Pflichtenheft
Das Pflichtenheft konkretisiert die in der Produktskizze beschriebenen Ziele für den RISC-
V-RV32I-SoC auf dem Tang Nano 9K FPGA. Es legt die Architektur des CPU-Kerns, die
5-stufige Pipeline, das FPU-Design (Floating Point Unit – Gleitkomma-Einheit) sowie die Rolle
des LiteX-Frameworks bei Integration, Takterzeugung und Peripherie-Anbindung fest. Die Im-
plementierung erfolgt in synthesizierbarem SystemVerilog (Hardware-Beschreibungssprache);
der SoC wird über das LiteX-Buildsystem erzeugt, das Bus-Infrastruktur (Wishbone – On-
Chip-Bus), Clock/Reset-Management (Takt-/Zurücksetz-Logik), Speicher- und Peripherie-
Mapping sowie den FPGA-spezifischen Build-Flow (Synthese und Place&Route) automatisiert
bereitstellt.

Die CPU verwendet eine klassische 5-Stufen-Pipeline (Fetch, Decode, Execute, Memory,
Writeback), wie in Abbildung 2.1 dargestellt. In der Fetch-Stufe erzeugt ein Program Counter
(PC) die aktuelle Befehlsadresse, optional mit Unterstützung von Komponenten wie Branch
Target Buffer (BTB – Sprungzielpuffer) und Branch History/Predictor (BHT, PHT – Sprung-
vorhersage), die in der Abbildung als separate Blöcke visualisiert sind. Die Instruktion wird
aus dem Instruktionsspeicher gelesen und über das IfId-Pipeline-Register an die Decode-Stufe
übergeben, wodurch eine klare zeitliche Trennung zwischen Adressberechnung und Befehlsde-
kodierung erreicht wird.

In der Decode-Stufe wird die Instruktion dekodiert und über den Decoder-Block in Steuer-
signale, Registeradressen und Immediate-Werte (unmittelbare Operanden) aufgeteilt; gleich-
zeitig liest das Register File (REGFILE) die Operanden rs1 und rs2. Ein Load-Use-Block
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Abbildung 2.1: Fünfstufige Pipeline bestehend aus Fetch-, Decode-, Execute-, Memory- und
Writeback-Stufe. Die Abbildung zeigt PC-Logik, Branch-Vorhersage, Register-File, ALU, Da-
tenpfad sowie die Pipeline-Register zwischen den Stufen. [Miy+20]

überwacht Datenabhängigkeiten zwischen Load-Instruktionen und nachfolgenden Instruktio-
nen und kann bei Bedarf die Pipeline anhalten (Stall) oder weiterlaufen lassen, wie durch die
Rückkopplungssignale in Abbildung 2.1 angedeutet. Alle relevanten Signale werden im IdEx-
Pipeline-Register zwischengespeichert, das in der Abbildung den Übergang zur Execute-Stufe
markiert und so für deterministische Signalübergaben sorgt.

In der Execute-Stufe berechnet die ALU (Arithmetic Logic Unit – Rechen- und Logik-
einheit) Zieladressen für Speicherzugriffe und Ergebnisse arithmetisch-logischer Operationen;
Forwarding-Multiplexer (Datenweiterleitungs-MUX) führen Ergebnisse aus späteren Pipeline-
Stufen zurück auf die ALU-Eingänge, um Data-Hazards (Datenkonflikte) zu vermeiden. Bei
Sprungbefehlen entscheidet die ALU oder eine separate Branch-Logik über die Sprungbedin-
gung, und ein PC-Multiplexer wählt das nächste PC-Ziel (normaler Sequenz-PC oder Sprun-
gadresse), was in der IF-Logik von Abbildung 2.1 über die Signale für neuen PC sichtbar ist.
Das ExMa-Pipeline-Register trennt Execute- und Memory-Stufe und leitet die berechneten
Adressen und Daten an den Speicherpfad weiter.

In der Memory -Stufe werden Speicherzugriffe über den Datenpfad (Adress-, Daten- und
Steuerleitungen) realisiert; ein Alignment-/Byte-Select-Block sorgt für korrekt ausgerichtete
Byte-, Halfword- und Word-Zugriffe. Gleichzeitig können in dieser Stufe weitere Steuersignale
für nachfolgende Interrupt- oder Ausnahmebehandlung gesammelt werden, etwa Fehlzugriffe
oder Miss-Signale. Das MaWb-Pipeline-Register übergibt schließlich die Daten an die Write-
back-Stufe, in der über einen Abschlussmultiplexer ausgewählt wird, ob ALU-Ergebnis oder
geladene Daten in das Register File zurückgeschrieben werden; der geschlossene Ergebnisrück-
weg ist in Abbildung 2.1 als Wb_rslt-Signal markiert.
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Abbildung 2.2: FPU-Design mit separatem Register-File, Hazard-Logik und spezialisierten Pi-
pelines für Load/Convert, Multiplikation, Addition, Division, Quadratwurzel und FMA. Die
Join- und Completion-Logik koppelt die FPU an die Writeback-Stufe der CPU an. [Spi25]

Das FPU-Design in Abbildung 2.2 zeigt eine entkoppelte Gleitkomma-Pipeline, die eng mit
der CPU verbunden ist, aber eigene Pipeline-Stufen und Hazard-Logik besitzt. Auf CPU-Seite
werden FPU-Befehle in der Decode-Stufe erkannt und als Kommando (cmd) an die FPU über-
geben; der Hazard-Block am Eingang der FPU stellt sicher, dass neue FPU-Operationen nur
akzeptiert werden, wenn interne Ressourcen frei sind und keine strukturellen Konflikte vorlie-
gen. Die FPU verfügt über ein eigenes Register File (RF) für Gleitkommaregister und meh-
rere spezialisierte Funktionspfade, die in der Abbildung als separate Pipelines für LOAD/I2F
(Integer-zu-Float-Konvertierung), MUL (Multiplikation), ADD (Addition), DIV (Division) und
SQRT (Quadratwurzel) dargestellt sind.

Die zentrale FMA-Einheit (Fused Multiply-Add – kombinierte Multiplikations-Addierer-
Einheit) bildet das Herz der FPU-Pipeline und kann je nach Befehl Multiplikation, Addition
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oder kombinierte Operationen ausführen; vorgeschaltete Pipeline-Register erlauben hohe Takt-
frequenzen bei mehreren parallel aktiven FPU-Befehlen. Weitere Blöcke implementieren Ope-
rationen wie MIN, MAX, SGNJ (Vorzeichenmanipulation), F2I (Float-zu-Integer-Konvertierung)
und CMP (Vergleich), während die Join-Logik Ergebnisse aus den unterschiedlichen Funktions-
pfaden zusammenführt und geordnet an die Completion-Phase weitergibt. Über das in Abbil-
dung 2.2 eingezeichnete Commit-Interface werden FPU-Ergebnisse in der Writeback-Stufe der
CPU in die Integer- oder FPU-Register geschrieben; parallel aktualisiert die FPU Status- und
Fehlerflags (fpuFlags) sowie Performance-Counter, die der CPU zur Auswertung zur Verfügung
stehen.

Die Instruktionsimplementierung folgt der [msy19] (RISC-V Instruction Set Architecture
– Befehlssatz-Architektur) mit U-, I-, R-, S-, B- und J-Formaten; die Dekodierung erfolgt
in der Decode-Stufe der Pipeline und steuert die in den Abbildungen gezeigten Pfade für
ALU, Speicherzugriffe, Branch-Logik und FPU-Anbindung. LiteX übernimmt im Hintergrund
die Rolle des SoC-Baukastens und sorgt dafür, dass die in den Abbildungen dargestellten
CPU- und FPU-Pipelines nahtlos in ein vollständiges System eingebettet werden, indem es
Wishbone-Schnittstellen generiert, Speicher und Peripherie an die Memory-Stufe bindet, Clock-
und Reset-Netze für alle Pipeline-Register bereitstellt und den Build-Flow bis hin zum Bit-
stream automatisiert.
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Kapitel 3

Planung

3.1 Personal
Das Projektteam bestand aus zwei Mitgliedern: Daniel und Erik. Die Aufgaben waren gleich-
mäßig aufgeteilt. Da nur ein FPGA zur Verfügung stand, wurde regelmäßig gewechselt. Wäh-
rend der eine am FPGA arbeitete und den Code entwickelte, kümmerte sich der andere um
die Dokumentation und die Recherche. Durch diesen fortlaufenden Wechsel konnten beide
Teammitglieder in allen Bereichen, sowohl in der praktischen Hardwarearbeit als auch in der
theoretischen Ausarbeitung, gleichmäßig Erfahrung sammeln und zum Fortschritt des Projekts
beitragen.

3.2 Material
Als Material kamen der FPGA Tang Nano 9K, unsere Laptops sowie ein USB-C-Kabel zum
Einsatz.

3.3 Zeit
Das Zeitmanagement war von Beginn an schwer einzuschätzen, da anfangs unklar war, ob wir
das Projekt überhaupt in der geplanten Form umsetzen können, selbst mit der Entscheidung,
nicht alles von Grund auf neu zu entwickeln. Auch zum derzeitigen Stand dieser Dokumentation
(31. Dezember 2025) hat die verfügbare Zeit bei weitem nicht ausgereicht. Wir verfügen
zwar über ein funktionsfähiges SoC, jedoch ohne PlatformIO-Integration und ohne RTOS-
Unterstützung. Das Projekt befindet sich weiterhin im Aufbau, und im Verlauf sind noch
mehrere neue Ideen hinzugekommen, die jedoch zeitlich nicht mehr umsetzbar waren.

Abbildung 3.1 zeigt den zeitlichen Verlauf der Entwicklung des Basis-SoCs.
Zum Diagramm 3.1 ist anzumerken, dass unser ursprünglicher Projektansatz darin bestand,

den SoC komplett in VHDL von Grund auf zu entwickeln. Diese frühe Phase und die dort
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Abbildung 3.1: Zeitleiste (erstellt mit Mermaid), welche die Commits und den ungefähren
Fortschritt des Projekts visualisiert.

erzielten Fortschritte sind im gezeigten Zeitverlauf nicht mehr enthalten.
Wie der Zeitleiste zu entnehmen ist, hat insbesondere das Aufsetzen des Docker-Containers

unerwartet viel Zeit in Anspruch genommen, insgesamt mehr als drei Wochen(ist nicht ganz
aus dem Diagramm zu entnehmen da wir am DockerContainer schon vorher aufgesetzt haben).
Nach Abschluss dieser Aufgabe traten weitere Verzögerungen auf: Unser ursprüngliches Ziel
war es, den Bitstream mithilfe einer Open-Source-Toolchain zu synthetisieren, zu platzieren
und zu routen. Wie sich jedoch später herausstellte, waren die verfügbaren Open-Source-Tools
für unsere Anforderungen nicht ausreichend optimiert, was uns letztlich etwa zwei zusätzliche
Wochen kostete. Nachdem dieses Problem behoben war, konnten wir endlich den bis dahin
entwickelten Code auf der physischen Hardware testen.

Während des gesamten Projekts haben wir parallel an mehreren Teilbereichen gearbeitet.
Jeden Montag fand eine Gruppenbesprechung statt, in der alle Teammitglieder ihren aktuellen
Stand präsentierten. Gemeinsam entschieden wir dann, welche Aufgaben weiterverfolgt oder
vorerst pausiert werden sollten. Feste Zeitpläne haben wir bewusst vermieden, da sich im
Verlauf oft zeigte, dass diese in der Praxis kaum realistisch waren.

Ab einem gewissen Zeitpunkt hat sich Erik vom Hauptprojekt abgekoppelt, um an der
Integration von PlatformIO zu arbeiten. Ziel war es, das Projekt zu einem wirklich nutzba-
ren Produkt weiterzuentwickeln. Der zeitliche Verlauf dieser Arbeiten ist in Abbildung 3.2
dargestellt.

Die Diagramme enthalten ausschließlich zeitlich relevante Aspekte, jedoch keine detaillier-
ten Ablaufbeschreibungen oder Programmierfortschritte.
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Abbildung 3.2: Zeitleiste (erstellt mit Mermaid) mit den Commit-Zeiten und Arbeitsschwer-
punkten der PlatformIO-Integration.
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Kapitel 4

Durchführung

4.1 Bau des Modells
Beim Bau des Modells beziehen wir uns auf unser Endprodukt, nicht auf das vorherige, auf-
gegebene Projekt.

4.1.1 Docker

Um überhaupt mit der Entwicklung beginnen zu können, mussten wir zunächst eine Entwick-
lungsumgebung schaffen, die die folgenden Anforderungen erfüllt:

• Sie muss plattformunabhängig und reproduzierbar sein (damit beide dieselbe Entwick-
lungsumgebung nutzen können).

• Alle benötigten Tools müssen enthalten und miteinander kompatibel sein (um Abhän-
gigkeitsfehler zu vermeiden).

• Für das Endprodukt soll sie einfach zu bedienen und möglichst fehlerunanfällig sein,
damit sie von jedem problemlos verwendet werden kann.

Die Entscheidung fiel uns zunächst nicht leicht, wir standen zwischen Nix und Docker. Nix
hätte den Vorteil gehabt, schneller und einfacher zu bauen, jedoch fehlten viele Pakete der
Toolchain als Nix-Pakete. Daher entschieden wir uns für eine Kombination aus Docker und
Makefile. So kann das Projekt mit einfachen CLI-Kommandos gebaut werden, ohne dass man
sich mit Docker weiter beschäftigt haben muss.
Wir entwickelten einen Docker-Container auf Basis von debian-bookworm-slim, um Bloatware
zu vermeiden und den Container schneller zu bauen. Innerhalb des Containers installierten wir
alle benötigten Tools, darunter Python (mit einer virtuellen Umgebung), LiteX, liteX-boards
sowie einige Build-Abhängigkeiten wie meson und jinja2. Anfangs dauerte der Build-Prozess
des Containers jedoch sehr lange, pro Änderung bis zu 30 Minuten. Um dies zu optimieren,
implementierten wir ein Caching-System, teilten den Container in fünf Stages auf und nutzten
Docker-Args, um verschiedene Stage-Kombinationen gezielt ausführen zu können.
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4.1.2 Toolchain

Der ursprüngliche Plan war, eine Open-Source-Toolchain zu verwenden 3.3, mit yosys als
Routing-Tool sowie nextpnr-himbaechel als Building-Tool für den Bitstream, in Kombina-
tion mit apycula und openFPGALoader zum Flashen des Designs.
Es zeigte sich jedoch schnell, dass die Open-Source-Tools nicht optimal mit den LUT-Ressourcen
des Tang Nano 9K umgehen. Dadurch kam es zu fehlerhaften Synthesen, obwohl das Design
grundsätzlich kompatibel war. Wir entschieden uns daher für die alternative, geschlossene
Toolchain GOWIN EDA. Das Problem dabei war jedoch, dass für die Installation persönliche
Daten angegeben werden mussten, was nicht im Sinne unseres Projekts war.
Nach längerer Recherche und Experimenten mit der Open-Source-Toolchain analysierten wir
schließlich den Download-Prozess der GOWIN-Webseite und stellten fest, dass der eigentli-
che Download-Link Statisch war. Diese Schwachstelle nutzten wir, um mithilfe des CLI-Tools
curl die Installationsdateien direkt herunterzuladen, ganz ohne Anmeldung. Dieses Verfahren
funktionierte erfolgreich, und wir waren gespannt mit der GOWIN EDA die ersten SoC-Tests
für den Tang Nano 9K durchführen.

4.1.3 SoC

Für den SoC begaben wir uns zunächst in eine intensive Lernphase. Wir beschäftigten uns
eingehend mit LiteX (das auf Migen basiert) und den internen Strukturen, um zu verstehen,
wie ein solches Projekt aufgebaut ist, welche Möglichkeiten es bietet und wie wir es am sinn-
vollsten nutzen können.
Schnell stellten wir fest, dass LiteX nur sehr spärlich dokumentiert ist. Es existieren zwar
Beispiele, diese sind jedoch oberflächlich, unkommentiert und bieten keine tiefere Hilfe zum
Verständnis der Architektur. Außerdem waren die Beispielprojekte unstrukturiert, alles befand
sich meist in einer einzigen Datei, was wir für unser Projekt vermeiden wollten.
Daher entwickelten wir unsere eigene, logisch aufgebaute Ordnerstruktur, die nach unserer
Einschätzung übersichtlicher und wartungsfreundlicher ist (siehe 5.0.1).
Nachdem wir die Basis für den SoC geschaffen, diesen mit Verilator simuliert und erfolgreich
getestet hatten, wagten wir den ersten vollständigen Flash-Versuch auf dem FPGA mit dem
LiteX-BIOS. Zunächst schien alles in Ordnung, keine Fehler wurden angezeigt. Beim Versuch,
sich via serieller Verbindung mit dem FPGA zu verbinden, traten jedoch Kommunikationsfehler
auf (siehe Kapitel 4.1.4). Diese Probleme konnten wir nach einiger Zeit beheben.
Damit hatten wir einen voll funktionsfähigen SoC, also quasi einen Mikrocontroller, Entwi-
ckelt, genau den Punkt, mit dem andere Projekte normalerweise beginnen. Bald stellten wir
jedoch fest, dass das Programmieren dieses SoCs komplexer war als erwartet. Gleichzeitig er-
kannten wir das große Potenzial des Projekts. Unsere nächste Zielsetzung war daher, daraus
ein vollwertiges Produkt zu machen, mit PlatformIO-Integration, sodass jeder den SoC leicht
programmieren konnte. Außerdem wollten wir ermöglichen, ein RTOS darauf auszuführen, was
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weitere vorteile für die konsumenten bieten würde.
Ab diesem Punkt war das ursprüngliche Projekt zwar abgeschlossen, doch wir wollten mehr.
Wir starteten zwei neue Teilprojekte: 1. Ein Repository mit Beispielen und Dokumentation,
wie man auf dem SoC unser RTOS Installiert. 2. Eine Integration für PlatformIO (work in
progress), da PlatformIO ein Industriestandard ist.
Für das RTOS entschieden wir uns für Zephyr [Zep25a]. Damit der SoC mit dessen Anfor-
derungen kompatibel ist, passten wir das Design entsprechend an. Mithilfe eines kaum doku-
mentierten LiteX-internen Tools gelang es uns schließlich, Konfigurationsdateien für Zephyr
automatisch zu generieren. Ein vollwertiges Image ist derzeit noch nicht komplett fertiggestellt.
Darüber hinaus spezialisierten wir unseren SoC auf Signalverarbeitung. Die Idee: Ein FPGA-
Design arbeitet schneller als Software, die darauf ausgeführt wird. Daher integrierten wir eine
FFT-(Fast Fourier Transform)-Bibliothek direkt in das SoC-Design.
Das Ergebnis ist ein System, das für zeitkritische Anwendungen, etwa in der Forschung, extrem
geringe Latenzzeiten erreicht, nahezu vergleichbar mit einem ASIC.

4.1.4 Serielle Verbindung

Das Problem mit der seriellen Kommunikation war, dass wir keine Verbindung mit den gewähl-
ten Tools herstellen konnten. Die Fehlersuche dauerte einige Zeit, bis wir die Ursache erkannt
und das Problem behoben hatten.
Nachdem die Verbindung schließlich funktionierte, erschien beim Start das LiteX-BIOS (siehe
Abbildung 4.1).

4.1.5 Website und Marketing

Wie bereits erwähnt, wollten wir unser Projekt zu einem vollwertigen Produkt weiterentwi-
ckeln, das jeder einfach nutzen oder als Grundlage für eigene Vorhaben verwenden kann – mit
den in Kapitel 4.1.3 beschriebenen Features.
Um das Projekt bekannter zu machen und Interessierten einen Eindruck über dessen Entste-
hung zu vermitteln, entwickelten wir eine Website. Diese gestalteten wir SEO-konform, sodass
sie von Suchmaschinen wie Google leichter gefunden und auch von KI-Systemen über die be-
reitgestellte sitemap.xml erkannt und indexiert werden kann.
Die Website zum Projekt ist unter folgendem Link erreichbar: https://erik-donath.github.io/muTau-
RV32-SoC/.

4.1.6 Git, Branches, Reviews und GitHub-Workflow

Um Fehler einfach korrigieren zu können und jederzeit auf den aktuellen Stand des Projekts
zugreifen zu können, entschieden wir uns für Git als Versionsverwaltungssystem. Zur Synchro-
nisation der Projektstände, für kollaboratives Arbeiten und als Cloud-Backup verwendeten wir
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Abbildung 4.1: Das BIOS, das angezeigt wird, wenn man sich via Serial verbindet und den
Befehl reboot eingibt.

zusätzlich GitHub. Dadurch war sichergestellt, dass jederzeit eine konsistente und aktuelle
Version des Projekts online verfügbar war.

Durch die Nutzung von Branches hielten wir den main-Branch stets stabil und funktions-
fähig. Für jeden neuen Entwicklungsschritt oder jedes neue Feature wurde eine eigene Branch
erstellt. Diese Vorgehensweise verhinderte, dass experimentelle Änderungen die stabile Haupt-
version beeinträchtigten, und schuf eine klare Trennung zwischen produktiver Entwicklung und
neuen Funktionen.

Sobald eine Feature-Branch als funktionsfähig galt, nutzten wir das GitHub-Review-System
(siehe z. B. dieses Beispiel). In diesem Workflow stellte Erik jeweils einen Pull Request mit ei-
ner Beschreibung der Änderungen, und Daniel überprüfte den Code, testete die Funktionalität
und gab abschließend die Freigabe zum Merge. Auf diese Weise entstand ein klar strukturier-
tes, nachvollziehbares und dauerhaft wartbares Projekt. Zudem ermöglichte diese Arbeitsweise,
dass beide Teammitglieder parallel an unterschiedlichen Bereichen arbeiten konnten, ohne dass
Fortschritte verloren gingen oder Missverständnisse über den Projektstand entstanden.

Um das Projekt weitgehend zu automatisieren, richteten wir zusätzlich mehrere GitHub Ac-
tions Workflows ein. Diese führen diverse Aufgaben automatisch aus:

• Build: Baut das Projekt automatisch bei jedem Commit oder Release und generiert die
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Bitstream-Dateien.

• Pages: Veröffentlicht die Projektwebseite automatisch über GitHub Pages.

• CodeQL: Führt eine statische Codeanalyse durch, um potenzielle Sicherheitslücken oder
Fehler frühzeitig zu erkennen.

Durch diesen automatisierten Prozess können die erzeugten Bitstreams direkt als GitHub-
Releases bereitgestellt werden. Dadurch müssen Nutzer, die sich nur für die fertigen FPGA-
Bitstreams interessieren, das Repository nicht klonen oder selbst bauen, sie können die fertigen
Builds bequem herunterladen.

Seite 17 von 32



Kapitel 5

Implementierung

5.0.1 Architekturübersicht (Hardware)

Das Projekt ist modular aufgebaut und besteht im Wesentlichen aus folgenden Teilen:

• boards/ – Board-spezifische Plattformdefinitionen (Pinout, Ressourcen).

• cores/ – Wiederverwendbare Hardware-Cores (z. B. HyperRAM/HyperBus).

• soc/ – SoC-Definitionen und Builder-Logik (Python, Migen/LiteX).

• firmware/ – Bare-Metal-Firmware-Targets (z. B. BIOS, einfache Beispiele).

• docs/, pages/ – Dokumentation / GitHub Pages.

• docker/, Makefile – Build-Umgebung und Automatisierung.

Die Hardwarebeschreibung wird mit Migen/LiteX in Python geschrieben; daraus erzeugt
der Builder die FPGA-Bitstreams (Gowin-Toolchain in diesem Projekt). Die Firmware nutzt
die von LiteX generierten Header (CSR-Definitionen), um auf die Peripherie zuzugreifen.

5.0.2 Wichtige Softwarekomponenten

Im Folgenden werden die zentralen Python-Module aus soc/ erklärt, die das System orche-
strieren.

SoC-Konfiguration (SoCConfig)

Die SoCConfig-Dataclass fasst die build- und board-spezifischen Parameter zusammen (Board-
name, Takt, RAM-Optionen, CPU-Konfiguration, Pfade). Wichtige Aspekte:

• Standard-Board: tang_nano_9k

• Sys-Clock-Default: 27 MHz
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• Wahl: externe RAM-Nutzung oder SRAM-only

• Output-Pfad: build/<board>

Beispiel (Auszug): → A.7.

Basis-SoC (BaseSoC)

BaseSoC (erbt von litex.soc.integration.soc_core.SoCCore) setzt das SoC zusam-
men:

• Initialisiert Clock-/Reset-Generator (CRG).

• Wählt CPU-Typ und -Variante (z. B. VexRiscv).

• Fügt Main Memory hinzu (falls extern nutzbar).

• Lässt das Board proprietäre Peripherie hinzufügen (GPIOs, UART, LEDs, etc.).

Ausschnitt: A.6.

Clocking / CRG

Die Clock- und Reset-Logik ist in soc/clocking.py implementiert. Für Gowin GW1N/GW1NR
Devices wird ein GW1N-PLL genutzt, ansonsten ein einfacher Pass-Through (sofern die Ein-
gangsfrequenz der Ziel-Frequenz entspricht).

Beispiel (Kernlogik) → A.5.

Builder / Build-Flow

Der Build-Entry-Point ist soc/builder.py. Er erzeugt ein BaseSoC-Objekt, bindet LiteX’s
Builder ein und bietet Optionen zum Bauen, Flashen und Laden (SRAM):

Wesentliche Funktionen:

• builder.build() erzeugt den FPGA-Bitstream (Gowin-Tooling).

• prog.flash(...) und prog.load_bitstream(...) zum Flashen bzw. Laden.

• Ausgabe der CSR-Map (csr.csv) in den Output-Ordner.

Ausschnitt → A.4.
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5.0.3 Firmware / Software-Interaktion

LiteX generiert beim SoC-Build Header- und Linker-Dateien (unter build/<board>/software/include/generated).
Diese enthalten CSR-Definitionen (Control and Status Registers) und Regions-Definitionen
(z. B. regions.ld), die Firmware benötigt:

• generated/csr.h: Helper-Funktionen / Makros zum Lesen/Schreiben von Peripherie-
Registers (z. B. LEDs, UART).

• generated/regions.ld: Memory-Map (SRAM, Flash) für den Linker.

• variables.mak: enthält CFLAGS, LDFLAGS, LIBS für Firmware-Build (wird von Firmware-
Build-Skripten gelesen).

Der typische Firmware-Start besteht aus:

1. Start-up-Assembly (crt0) initialisiert Stack, BSS, ggf. kopiert .data.

2. main() benutzt die LiteX-generierten CSR-APIs, um Peripherie zu steuern.

3. Firmware wird als BIOS oder als Kernel über SerialBoot/Flash geladen.

5.0.4 Beispiel: minimale Firmware (aus dem Baseline-Repository)

Eine typische Demo-Firmware toggelt LEDs über die CSR-API → A.2.

Architekturübersicht (Software)

Die Firmware ist ein kleines Bare-Metal-Programm für einen RV32-Kern (VexRiscv über LiteX).
Die wichtige Idee:

1. LiteX (in soc/) erzeugt Board-/SoC-spezifische Header und Linker-Regionen (unter
software/include/generated).

2. Das Firmware-Projekt kompiliert gegen diese generierten Header (CSR-Definitionen,
Adressen).

3. Die Startsequenz (crt0.S) richtet die Laufzeitumgebung ein (Stack, BSS, .data).

4. main.c verwendet die generierten CSR-Access-Funktionen (z.B. leds_out_write) um
die Hardware zu steuern.

5. Linker-Skript (linker.ld) sorgt dafür, dass alle Segmente im SRAM liegen (keine ex-
terne Flash-Nutzung).
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Start-Up: src/crt0.S

Wesentliche Aufgaben:

• Stackpointer initialisieren (typischer Stack-Top: SRAM-Start + Offset).

• BSS-Bereich mit Nullen füllen.

• Optional .data von ROM nach RAM kopieren (für SRAM-only Konfiguration evtl. bereits
korrekt).

• main aufrufen; falls main zurückkehrt, Endlosschleife.

Beispiel (aus src/crt0.S) → A.3.

5.0.5 Anwendungs-Entry: src/main.c

Das kleine C-Programm demonstriert direkte Nutzung eines LiteX-generierten CSR-APIs. Es
inkludiert generated/csr.h – diese Header wird von LiteX erzeugt und enthält Register-
/Zugriffs-Makros/-Funktionen für die SoC-Peripherie.

Code (aus src/main.c) → A.2.
Erläuterung:

• generated/csr.h definiert Funktionen wie leds_out_write(uint32_t) zum Schrei-
ben in die LED-Register (per LiteX generiert).

• Die Endlosschleife wechselt LED-Muster mit einfachen Software-Delays.

• In einem echten Projekt würden hier zusätzlich Initialisierung, Interrupt-Setup oder Pe-
ripheriebehandlung stattfinden.

5.0.6 Linker-Skript: linker.ld

Das Linker-Skript nutzt LiteX-generierte Definitionsdateien, um Adresse/Größe des SRAMs
(und ggf. anderer Regionen) zu benutzen. Es legt alle Segment-Aliase auf SRAM fest, damit
die Firmware komplett im RAM liegt.

Auszug → A.1
Wirkung:

• Alle Abschnitte werden an Adressen gemappt, die in generated/regions.ld definiert
sind (von LiteX bereitgestellt).

• Dadurch ist ein nahtloses Zusammenspiel zwischen LiteX-Hardware-Map und Firmware
möglich.
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5.0.7 Build-Konfiguration: CMakeLists.txt und Toolchain

Hauptaufgaben von CMake:

• Einlesen der LiteX-Variablen (z. B. CFLAGS, LDFLAGS, LIBS) aus variables.mak.

• Zusammensetzen der Compiler-/Linker-Flags (z. B. -march=rv32i -mabi=ilp32).

• Einbinden des localen linker.ld und Verhindern von Standard-Libs (bare-metal).

Toolchain (cmake/toolchain-riscv.cmake) setzt cross-compiler Pfade:

[
# cmake/toolchain-riscv.cmake
set(CMAKE_SYSTEM_NAME Generic)
set(CMAKE_SYSTEM_PROCESSOR riscv32)

set(CMAKE_C_COMPILER /opt/riscv-toolchain/bin/riscv64-unknown-elf-gcc)
set(CMAKE_CXX_COMPILER /opt/riscv-toolchain/bin/riscv64-unknown-elf-g++)
...

5.0.8 Zusammenspiel mit LiteX (generated headers)

Wichtig ist, dass LiteX vor dem Firmware-Build ausgeführt wurde, damit die Dateien unter
LITEX_BUILD_DIR/software/include/generated vorhanden sind. Diese generierten Da-
teien enthalten:

• csr.h / andere Header mit Register-Defines und Helper-Funktionen.

• regions.ld, output_format.ld, variables.mak für Linker- und Build-Parameter.

5.1 Test
Wie bereits in Abbildung 3.1 dargestellt, wurden mehrere Tests durchgeführt, um die korrekte
Funktionsweise des SoCs sicherzustellen. Dazu zählten unter anderem einfache Schreibtests in
CSRs (Control and Status Register) innerhalb der Verilatorsimulation, aber auch praktische
Experimente direkt auf dem Board, etwa durch kleine Blinky-Programme, einfache Assembler-
Befehle und verschiedene BIOS-Kommandos.
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Projektabschluss

6.1 Fazit
Das ursprüngliche Ziel des Projekts haben wir nicht vollständig erreicht. Unser Plan, einen
eigenen SoC bzw. eine CPU von Grund auf in VHDL zu entwickeln, ließ sich in der vorgese-
henen Zeit nicht umsetzen. Wie jedoch aus dieser Dokumentation hervorgeht, war auch das
alternative Projekt wesentlich umfangreicher, als zuvor angenommen. Wir haben uns anfangs
deutlich überschätzt, konnten jedoch, trotz Zeitverzögerung – ein Ergebnis schaffen, das sich
sehen lassen kann.

Am Ende entstand ein voll funktionsfähiges Produkt, das sich keineswegs hinter anderen
Projekten verstecken muss. Mit etwas weiterer Entwicklung könnte es sogar marktreif sein, da
unser SoC langfristig eine echte Alternative zu Mikrocontrollern wie Arduino oder gängigen
MCUs darstellt (sobald die Integration vollständig abgeschlossen ist). Darüber hinaus haben
wir unser Produkt durch eine integrierte FFT-Schaltung erweitert, die für Signalverarbeitung
genutzt werden kann, direkt in Hardware, ohne zusätzliche Bibliotheken.

Ebenso ist es uns gelungen, das Projekt strukturiert und im Team organisiert anzugehen,
eine ausführliche Dokumentation zu erstellen und sogar eine begleitende Website zu veröffent-
lichen. Trotz aller Erfolge müssen wir jedoch einräumen, dass wir uns mit diesem Vorhaben
eindeutig übernommen haben. Wir haben unzählige Stunden außerhalb der Schule daran gear-
beitet – und mittlerweile fühlt sich das Projekt fast an wie unser gemeinsames „Kind“, das wir
über Monate hinweg großgezogen haben. Und das alles für gerade einmal eine Note in einem
Nebenfach.

6.2 Ausblick

6.2.1 Weitere Ideen

Da unser Projekt bzw. Produkt bislang noch nicht zu 100 % fertiggestellt ist, wäre der erste
Schritt, es vollständig abzuschließen. Anschließend gibt es jedoch zahlreiche weitere Ideen, die
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wir gern umsetzen würden.

Da sich das Projekt besonders an Einsteiger und Hobbyanwender richtet, wäre ein wichti-
ger nächster Schritt, den Installationsprozess zu vereinfachen. Aktuell erfolgt das Flashen des
FPGAs, indem dieser an einen Docker-Container gemountet wird. Über diesen Container wird
das Board mit einem Makefile beschrieben, ein Prozess, der für Anfänger zu komplex sein
kann. Eine sinnvolle Erweiterung wäre daher ein Web-Installer, der mittels JTAG-WebUSB
direkt über den Browser die Bitstreams auf das FPGA lädt.

Eine weitere Idee ist die Erweiterung der integrierten Signalverarbeitungstools. Ne-
ben der FFT könnten zusätzliche Filter, etwa ein Butterworth-Filter, implementiert werden.
Außerdem wäre ein weiterer SoC interessant, der sich speziell an Kryptographie-Anwendungen
richtet, mit geeigneten Hardwaremodulen zur Unterstützung solcher Aufgaben.

Darüber hinaus könnten wir ein ganz neues Produkt entwickeln, ähnlich wie ein Xilinx-
SoC. Dabei würden wir unser bestehendes Projekt erweitern, indem wir einen AXI-Bus an
einige Pins anbinden, der zu einem weiteren FPGA führt. Über den Device Tree eines RTOS
könnte dieser Bus mit den CSRs verbunden werden, wodurch es möglich wäre, einen zweiten
FPGA dynamisch über HDL zu konfigurieren, während er gleichzeitig vom SoC gesteuert wird.
Dies würde die Möglichkeiten unseres Systems erheblich erweitern.

Auch ein weiteres lohnenswertes Ziel wäre, den SoC so anzupassen, dass darauf Linux
lauffähig ist, was ihn zu einem kleinen, vollwertigen Einplatinencomputer machen würde.

Zudem könnte unser aktuelles PWM-Protokoll verbessert werden, da es derzeit auf einem
Workaround basiert und noch keine echte PWM-Implementierung darstellt.

6.3 Code
Da es aufgrund der Größe des Projekts und der vielen Submodule zu aufwendig wäre, den ge-
samten Code in eine einzelne ZIP-Datei zu packen, und dies außerdem die Speicherlimits von
Moodle oder IServ überschreiten würde – stellen wir die Quellcodes stattdessen über GitHub
zur Verfügung. Dort können die Projekte einzeln eingesehen oder als ZIP-Dateien herunterge-
laden werden.

https://github.com/Erik-Donath/muTau-Zephyr
https://github.com/Erik-Donath/muTau-RV32-SoC
https://github.com/Erik-Donath/muTau-Barebone
https://github.com/Erik-Donath/muTau-PlatformIO
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Anhang A

Anhang

A.1 Linker Script
/* linker.ld - SRAM-resident firmware for muTau-RV32-SoC */

/* Use LiteX-generated memory layout and output format. */
INCLUDE generated/regions.ld
INCLUDE generated/output_format.ld

/* Use sram (defined in regions.ld) for everything */
REGION_ALIAS("REGION_TEXT", sram);
REGION_ALIAS("REGION_RODATA", sram);
REGION_ALIAS("REGION_DATA", sram);
REGION_ALIAS("REGION_BSS", sram);
REGION_ALIAS("REGION_STACK", sram);

SECTIONS
{

.text :
{

_ftext = .;
KEEP(*(.init))
*(.text .text.*)
KEEP(*(.fini))
_etext = .;

} > REGION_TEXT

... (data, bss, stack) ...
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}

A.2 main.c

1 // src/main.c

2

3 # include <generated/csr.h>

4

5 int main(void) {

6 while (1) {

7 leds_out_write (0xAA);

8 for(int i = 0; i < 1000000; i++);

9 leds_out_write (0x55);

10 for(int i = 0; i < 1000000; i++);

11 }

12 return 0;

13 }

A.3 crt0.S
/* src/crt0.S - Minimal startup code for VexRiscv on LiteX */

.section .init, "ax"

.global _start

_start:
/* Set stack pointer to top of SRAM (0x10000000 + 0x2000 = 0x10002000) */
li sp, 0x10002000

/* Clear the BSS segment */
la t0, _fbss
la t1, _ebss

bss_loop:
bgeu t0, t1, bss_done
sw zero, 0(t0)
addi t0, t0, 4
j bss_loop

bss_done:
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/* Copy data section from ROM to RAM if needed (optional for SRAM-only) */
la t0, _fdata
la t1, _edata
la t2, _fdata /* In SRAM-only config, data is already in place */

data_loop:
bgeu t0, t1, data_done
lw t3, 0(t2)
sw t3, 0(t0)
addi t0, t0, 4
addi t2, t2, 4
j data_loop

data_done:

/* Call main */
call main

halt:
j halt

A.4 load csr

1 # soc/builder.py

2 from litex.soc.integration.builder import Builder

3

4 def build_soc(config: SoCConfig , build=False , flash=False , load=

False):

5 soc = BaseSoC(config)

6 builder = Builder(soc , output_dir=config.output_path , csr_csv

=f"{config.output_path }/csr.csv")

7

8 if build:

9 builder.build()

10 if flash:

11 prog = soc.platform.create_programmer ()

12 bitstream = builder.get_bitstream_filename(mode="flash",

ext=".fs")

13 prog.flash(0, bitstream)

14 bios = builder.get_bios_filename ()

15 prog.flash(0x40000 , bios , external=True)

16 if load:
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17 prog = soc.platform.create_programmer ()

18 bitstream = builder.get_bitstream_filename(mode="sram")

19 prog.load_bitstream(bitstream)

20 return builder

21

22 def main():

23 # Argumentparsing: --board , --build , --flash , --load , ...

24 # Erstellt SoCConfig und ruft build_soc auf

A.5 kernlogik

1 # soc/clocking.py

2 from litex.soc.cores.clock.gowin_gw1n import GW1NPLL

3 class ClockDomainGenerator(LiteXModule):

4 def __init__(self , platform , sys_clk_freq , input_clk_name="

clk27", input_clk_freq =27e6):

5 self.rst = Signal ()

6 self.cd_sys = ClockDomain ()

7 clk_in = platform.request(input_clk_name)

8 reset_btn = platform.request("user_btn", 0)

9

10 if hasattr(platform , "devicename"):

11 self._create_gowin_pll(platform , clk_in , reset_btn ,

input_clk_freq , sys_clk_freq)

12 else:

13 raise NotImplementedError (...)

14

15 def _create_gowin_pll(self , platform , clk_in , reset_btn ,

input_freq , output_freq):

16 dev = platform.devicename

17 if dev.startswith("GW1N") or dev.startswith("GW1NR"):

18 self.pll = GW1NPLL(devicename=platform.devicename ,

device=platform.device)

19 self.comb += self.pll.reset.eq(~ reset_btn)

20 self.pll.register_clkin(clk_in , input_freq)

21 self.pll.create_clkout(self.cd_sys , output_freq)

22 else:

23 self.comb += self.cd_sys.clk.eq(clk_in)

24 self.comb += self.cd_sys.rst.eq(~ reset_btn)
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A.6 BaseSoC

1 # soc/base.py

2 from litex.soc.integration.soc_core import SoCCore

3 class BaseSoC(SoCCore):

4 def __init__(self , config):

5 self.soc_config = config

6 board = get_board(config.board_name)

7 platform = board.create_platform ()

8

9 self.crg = ClockDomainGenerator(

10 platform=platform ,

11 sys_clk_freq=config.sys_clk_freq ,

12 input_clk_name=getattr(board , "input_clk_name",

platform.default_clk_name),

13 input_clk_freq=getattr(board , "input_clk_freq",

config.sys_clk_freq),

14 )

15

16 SoCCore.__init__(

17 self ,

18 platform ,

19 config.sys_clk_freq ,

20 cpu_type=config.cpu_type ,

21 cpu_variant=config.cpu_variant ,

22 cpu_reset_address=config.cpu_reset_address ,

23 integrated_rom_size=config.integrated_rom_size ,

24 integrated_sram_size=config.integrated_sram_size ,

25 ident=f"RISC -V␣SoC␣on␣{board.name}",

26 ident_version=True ,

27 )

28

29 if not self.integrated_main_ram_size and config.

with_external_ram:

30 board.add_main_memory(self , platform , config)

31

32 board.add_peripherals(self , platform , config)

A.7 soconfig
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1 # soc/config.py

2 from dataclasses import dataclass

3 @dataclass

4 class SoCConfig:

5 board_name: str = "tang_nano_9k"

6 sys_clk_freq: float = 27e6

7 with_external_ram: bool = True

8 integrated_rom_size: int = 128 * 1024

9 integrated_sram_size: int = 8 * 1024

10 external_ram_size: int = 4 * 1024 * 1024

11 cpu_type: str = "vexriscv"

12 cpu_variant: str = "standard"

13 build_name: str = "soc"

14 output_dir: str = "build"

15 # ...

16 @property

17 def output_path(self):

18 return f"{self.output_dir }/{ self.board_name}"

A.8 Quellen
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