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Kapitel 1

Einflihrung

1.1 Vorwort

Vorab moéchten wir uns bei Frau Engel entschuldigen. Wir wussten, dass die Dokumentation
maximal 15 Seiten lang sein sollte. Doch bei unserem umfangreichen Projekt, das deutlich aus
dem Ruder gelaufen ist und am Ende ein enormes MaB an Komplexitat erreicht hat, war es
schlicht nicht mehr moglich, alles, was passiert ist, sowie die vollstandige Logik innerhalb von
15 Seiten unterzubringen. Wir hoffen dennoch, dass alle, die dies lesen, ihren SpaB haben und

vielleicht etwas lernen. Dies ist eine Dokumentation voller Verzweiflung und Hoffnung.

1.2 Eidesstattliche Erklarung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dokumentation selbststandig
erstellt habe. Der Inhalt stammt ausschlieBlich von mir, und es wurden keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet. Dieses Dokument wurde lediglich durch eine
Kl zur Korrektur (z. B. Grammatik und Stil) gelesen; der gesamte Inhalt basiert jedoch allein
auf meiner eigenen Arbeit. Alle wortlichen und sinngeméaBen Zitate sind gekennzeichnet, und
die gedruckte sowie die elektronische Version stimmen lberein. Mir ist bekannt, dass falsche

Angaben strafrechtliche Konsequenzen nach § 156 StGB haben kénnen.

1.3 Einleitung

Das Ziel unseres Projekts war es, einen RISC-V RV32I fiir den Tang Nano 9K zu implemen-
tieren. Die HDL (Hardware Description Language) unserer Wahl war VHDL, da sie robuster
und typsicherer ist als Verilog.

Vorab dieses Projekt mussten wir jedoch aufgeben, nachdem wir nach zwei Wochen erkannt
hatten, wie aufwandig es tatsachlich ist. In dieser Zeit hatten wir es nicht geschafft, ein Er-

gebnis zu erzielen, das sowohl praktisch vorzeigbar gewesen ware als auch unseren eigenen
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Anspriichen genligt hatte.

Also entschieden wir uns, das Projekt zu vereinfachen, indem wir ein Framework nutzten, das
uns viel Arbeit abnahm. Statt alles manuell zu schreiben, mussten wir nur noch definieren,
was wir haben wollten, erganzt um etwas Logik. Dieses Framework lbersetzte unseren Code

anschlieBend automatisch in Verilog.

1.4 Projektumfeld

Das Projekt fand im Rahmen des IT-Unterrichts im Unterrichtsfeld Prozessautomatisierung

statt. Es wurde sowohl in der Schule als auch im privaten Umfeld aktiv daran gearbeitet.
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Kapitel 2

Analyse

2.1 Zielsetzung / Produktskizze

Die gesteckten Projektziele waren in zwei Hauptkriterien unterteilt. Das erste Kriterium be-
stand in der Entwicklung eines funktionsfahigen System-on-Chip (SoC) auf Basis der RISC-
V-Architektur (RV32l). Der entwickelte SoC sollte in der Lage sein, eigenstandig Software
auszufithren, ahnlich wie ein Mikrocontroller, beispielsweise auf einem Arduino-System. Ziel
war es, Programme direkt auf dem SoC auszufiihren und tber dessen GPIO-Pins externe Hard-
warekomponenten, wie LEDs oder Sensoren, anzusteuern und auszulesen. Damit sollte eine

einfache Schnittstelle zwischen Software und Hardware gewahrleistet werden.

Auf architektonischer Ebene war vorgesehen, dass der Prozessor grundlegende CPU-Komponenten
enthalt, die die effiziente Ausfithrung von Programmen ermoglichen. Dazu zahlen eine Pipeline-
Architektur fur parallele Befehlsverarbeitung, ein Interrupt-Handling-System sowie optionale
Module wie eine Multiply-Divide-Unit (fiir RV32IM-Erweiterungen), eine Floating-Point-Unit
(FPU) fiir Gleitkommaoperationen und ein Timer-Subsystem. Dariiber hinaus sollte das SoC-
Design lber eine klar definierte Speicherhierarchie verfiigen, bestehend aus einem Instruction
und einem Data-Memory-Bereich sowie einem Bus-System zur Anbindung externer Periphe-
rie. Zusatzlich sollten Taktgenerierung und Reset-Logik modular realisiert sein, beispielsweise
durch die Nutzung von MMCMs (Mixed-Mode Clock Manager), um verschiedene Taktfrequen-

zen fiir CPU-Kern und Peripherie bereitzustellen.

Das zweite Hauptkriterium bezog sich auf die physische Implementierung: Der entwickelte
SoC sollte nach erfolgreicher Simulation auch auf realer Hardware lauffahig sein. Konkret
sollte der Chip auf dem gewahlten FPGA-Board Tang Nano 9K implementiert und getestet
werden. Dies erforderte die Integration der Hardware in die LiteX-Umgebung, das Generieren
der entsprechenden Bitstream-Dateien sowie die erfolgreiche Ubertragung und Inbetriebnahme

des SoCs auf dem FPGA. Hierbei war insbesondere sicherzustellen, dass alle Funktionen, wie
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Takterzeugung, Speicheranbindung, GPIO-Steuerung und Programm-Upload — sowohl in der

Simulation als auch auf der Zielhardware konsistent funktionieren.

2.2 Begriindung der Entscheidung

Das Projekt wurde aus der Intention heraus ausgewahlt, eine echte Herausforderung zu schaf-
fen, mit einem Vorhaben, das fiir die vorgesehene Zeit und das in der Schule vermittelte Wissen
eigentlich nicht erreichbar war.

Ein weiterer Grund fiir diese Entscheidung war die Motivation, das eigene Wissen zu vertiefen
und zu erweitern. Es war die Wissbegierde, zu verstehen, wie ein Mikrocontroller funktioniert
und wie aufwendig oder einfach es ist, ein solches System selbst zu entwickeln.

Wir wollten kein Projekt umsetzen, das lediglich auf bestehenden Losungen aufbaut. Statt-
dessen wollten wir die Grundlagen nachvollziehen und ein tieferes Verstandnis dafiir gewinnen,

wie Hardware und Logik tatsiachlich zusammenspielen.

2.3 Pflichtenheft

Das Pflichtenheft konkretisiert die in der Produktskizze beschriebenen Ziele fiir den RISC-
V-RV32l-SoC auf dem Tang Nano 9K FPGA. Es legt die Architektur des CPU-Kerns, die
5-stufige Pipeline, das FPU-Design (Floating Point Unit — Gleitkomma-Einheit) sowie die Rolle
des LiteX-Frameworks bei Integration, Takterzeugung und Peripherie-Anbindung fest. Die Im-
plementierung erfolgt in synthesizierbarem SystemVerilog (Hardware-Beschreibungssprache);
der SoC wird iber das LiteX-Buildsystem erzeugt, das Bus-Infrastruktur (Wishbone — On-
Chip-Bus), Clock/Reset-Management (Takt-/Zuriicksetz-Logik), Speicher- und Peripherie-
Mapping sowie den FPGA-spezifischen Build-Flow (Synthese und Place&Route) automatisiert
bereitstellt.

Die CPU verwendet eine klassische 5-Stufen-Pipeline (Fetch, Decode, Execute, Memory,
Writeback), wie in Abbildungdargestellt. In der Fetch-Stufe erzeugt ein Program Counter
(PC) die aktuelle Befehlsadresse, optional mit Unterstitzung von Komponenten wie Branch
Target Buffer (BTB — Sprungzielpuffer) und Branch History/Predictor (BHT, PHT — Sprung-
vorhersage), die in der Abbildung als separate Blocke visualisiert sind. Die Instruktion wird
aus dem Instruktionsspeicher gelesen und iiber das Ifld-Pipeline-Register an die Decode-Stufe
ibergeben, wodurch eine klare zeitliche Trennung zwischen Adressberechnung und Befehlsde-

kodierung erreicht wird.

In der Decode-Stufe wird die Instruktion dekodiert und tiber den Decoder-Block in Steuer-
signale, Registeradressen und Immediate-Werte (unmittelbare Operanden) aufgeteilt; gleich-
zeitig liest das Register File (REGFILE) die Operanden rs1 und rs2. Ein Load-Use-Block
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Abbildung 2.1: Finfstufige Pipeline bestehend aus Fetch-, Decode-, Execute-, Memory- und
Writeback-Stufe. Die Abbildung zeigt PC-Logik, Branch-Vorhersage, Register-File, ALU, Da-
tenpfad sowie die Pipeline-Register zwischen den Stufen. [Miy+20]

iberwacht Datenabhangigkeiten zwischen Load-Instruktionen und nachfolgenden Instruktio-
nen und kann bei Bedarf die Pipeline anhalten (Stall) oder weiterlaufen lassen, wie durch die
Rickkopplungssignale in Abbildung angedeutet. Alle relevanten Signale werden im IdEx-
Pipeline-Register zwischengespeichert, das in der Abbildung den Ubergang zur Execute-Stufe

markiert und so fiir deterministische Signaliibergaben sorgt.

In der Execute-Stufe berechnet die ALU (Arithmetic Logic Unit — Rechen- und Logik-
einheit) Zieladressen fiir Speicherzugriffe und Ergebnisse arithmetisch-logischer Operationen;
Forwarding-Multiplexer (Datenweiterleitungs-MUX) fiihren Ergebnisse aus spateren Pipeline-
Stufen zuriick auf die ALU-Eingénge, um Data-Hazards (Datenkonflikte) zu vermeiden. Bei
Sprungbefehlen entscheidet die ALU oder eine separate Branch-Logik (iber die Sprungbedin-
gung, und ein PC-Multiplexer wahlt das nachste PC-Ziel (normaler Sequenz-PC oder Sprun-
gadresse), was in der IF-Logik von Abbildung uber die Signale fir neuen PC sichtbar ist.
Das ExMa-Pipeline-Register trennt Execute- und Memory-Stufe und leitet die berechneten

Adressen und Daten an den Speicherpfad weiter.

In der Memory-Stufe werden Speicherzugriffe iiber den Datenpfad (Adress-, Daten- und
Steuerleitungen) realisiert; ein Alignment-/Byte-Select-Block sorgt fiir korrekt ausgerichtete
Byte-, Halfword- und Word-Zugriffe. Gleichzeitig konnen in dieser Stufe weitere Steuersignale
fir nachfolgende Interrupt- oder Ausnahmebehandlung gesammelt werden, etwa Fehlzugriffe
oder Miss-Signale. Das MaWb-Pipeline-Register tibergibt schlieBlich die Daten an die Write-
back-Stufe, in der iiber einen Abschlussmultiplexer ausgewahlt wird, ob ALU-Ergebnis oder

geladene Daten in das Register File zuriickgeschrieben werden; der geschlossene Ergebnisriick-
weg ist in Abbildung als Wb_rslt-Signal markiert.
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Abbildung 2.2: FPU-Design mit separatem Register-File, Hazard-Logik und spezialisierten Pi-
pelines fir Load/Convert, Multiplikation, Addition, Division, Quadratwurzel und FMA. Die
Join- und Completion-Logik koppelt die FPU an die Writeback-Stufe der CPU an. [Spi25]

Das FPU-Design in Abbildung[2.2] zeigt eine entkoppelte Gleitkomma-Pipeline, die eng mit
der CPU verbunden ist, aber eigene Pipeline-Stufen und Hazard-Logik besitzt. Auf CPU-Seite
werden FPU-Befehle in der Decode-Stufe erkannt und als Kommando (cmd) an die FPU iber-
geben; der Hazard-Block am Eingang der FPU stellt sicher, dass neue FPU-Operationen nur
akzeptiert werden, wenn interne Ressourcen frei sind und keine strukturellen Konflikte vorlie-
gen. Die FPU verfiigt (iber ein eigenes Register File (RF) fir Gleitkommaregister und meh-
rere spezialisierte Funktionspfade, die in der Abbildung als separate Pipelines fiir LOAD/I2F
(Integer-zu-Float-Konvertierung), MUL (Multiplikation), ADD (Addition), DIV (Division) und
SQRT (Quadratwurzel) dargestellt sind.

Die zentrale FMA-Einheit (Fused Multiply-Add — kombinierte Multiplikations-Addierer-
Einheit) bildet das Herz der FPU-Pipeline und kann je nach Befehl Multiplikation, Addition
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oder kombinierte Operationen ausfiihren; vorgeschaltete Pipeline-Register erlauben hohe Takt-
frequenzen bei mehreren parallel aktiven FPU-Befehlen. Weitere Blocke implementieren Ope-
rationen wie MIN, MAX, SGNJ (Vorzeichenmanipulation), F2I (Float-zu-Integer-Konvertierung)
und CMP (Vergleich), wahrend die Join-Logik Ergebnisse aus den unterschiedlichen Funktions-
pfaden zusammenfiihrt und geordnet an die Completion-Phase weitergibt. Uber das in Abbil-
dung 2.2 eingezeichnete Commit-Interface werden FPU-Ergebnisse in der Writeback-Stufe der
CPU in die Integer- oder FPU-Register geschrieben; parallel aktualisiert die FPU Status- und
Fehlerflags (fpuFlags) sowie Performance-Counter, die der CPU zur Auswertung zur Verfiigung

stehen.

Die Instruktionsimplementierung folgt der [msyl9] (RISC-V Instruction Set Architecture
— Befehlssatz-Architektur) mit U-, I-, R-, S-, B- und J-Formaten; die Dekodierung erfolgt
in der Decode-Stufe der Pipeline und steuert die in den Abbildungen gezeigten Pfade fiir
ALU, Speicherzugriffe, Branch-Logik und FPU-Anbindung. LiteX iibernimmt im Hintergrund
die Rolle des SoC-Baukastens und sorgt dafiir, dass die in den Abbildungen dargestellten
CPU- und FPU-Pipelines nahtlos in ein vollstandiges System eingebettet werden, indem es
Wishbone-Schnittstellen generiert, Speicher und Peripherie an die Memory-Stufe bindet, Clock-
und Reset-Netze fiir alle Pipeline-Register bereitstellt und den Build-Flow bis hin zum Bit-

stream automatisiert.
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Kapitel 3

Planung

3.1 Personal

Das Projektteam bestand aus zwei Mitgliedern: Daniel und Erik. Die Aufgaben waren gleich-
maBig aufgeteilt. Da nur ein FPGA zur Verfligung stand, wurde regelmaBig gewechselt. Wah-
rend der eine am FPGA arbeitete und den Code entwickelte, kimmerte sich der andere um
die Dokumentation und die Recherche. Durch diesen fortlaufenden Wechsel konnten beide
Teammitglieder in allen Bereichen, sowohl in der praktischen Hardwarearbeit als auch in der
theoretischen Ausarbeitung, gleichmaBig Erfahrung sammeln und zum Fortschritt des Projekts

beitragen.

3.2 Material

Als Material kamen der FPGA Tang Nano 9K, unsere Laptops sowie ein USB-C-Kabel zum

Einsatz.

3.3 Zeit

Das Zeitmanagement war von Beginn an schwer einzuschatzen, da anfangs unklar war, ob wir
das Projekt Giberhaupt in der geplanten Form umsetzen konnen, selbst mit der Entscheidung,
nicht alles von Grund auf neu zu entwickeln. Auch zum derzeitigen Stand dieser Dokumentation
(31. Dezember 2025) hat die verfiighare Zeit bei weitem nicht ausgereicht. Wir verfiigen
zwar Uber ein funktionsfahiges SoC, jedoch ohne PlatformlO-Integration und ohne RTOS-
Unterstitzung. Das Projekt befindet sich weiterhin im Aufbau, und im Verlauf sind noch
mehrere neue Ideen hinzugekommen, die jedoch zeitlich nicht mehr umsetzbar waren.

Abbildung zeigt den zeitlichen Verlauf der Entwicklung des Basis-SoCs.

Zum Diagramm ist anzumerken, dass unser urspriinglicher Projektansatz darin bestand,
den SoC komplett in VHDL von Grund auf zu entwickeln. Diese friihe Phase und die dort

10
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muTau-RV32-SoC: Vollsténdige Entwicklung (Nov-Dez 2025)
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Abbildung 3.1: Zeitleiste (erstellt mit Mermaid), welche die Commits und den ungefahren
Fortschritt des Projekts visualisiert.

erzielten Fortschritte sind im gezeigten Zeitverlauf nicht mehr enthalten.

Wie der Zeitleiste zu entnehmen ist, hat insbesondere das Aufsetzen des Docker-Containers
unerwartet viel Zeit in Anspruch genommen, insgesamt mehr als drei Wochen(ist nicht ganz
aus dem Diagramm zu entnehmen da wir am DockerContainer schon vorher aufgesetzt haben).
Nach Abschluss dieser Aufgabe traten weitere Verzogerungen auf: Unser urspriingliches Ziel
war es, den Bitstream mithilfe einer Open-Source-Toolchain zu synthetisieren, zu platzieren
und zu routen. Wie sich jedoch spater herausstellte, waren die verfiighbaren Open-Source-Tools
fir unsere Anforderungen nicht ausreichend optimiert, was uns letztlich etwa zwei zusatzliche
Wochen kostete. Nachdem dieses Problem behoben war, konnten wir endlich den bis dahin
entwickelten Code auf der physischen Hardware testen.

Wahrend des gesamten Projekts haben wir parallel an mehreren Teilbereichen gearbeitet.
Jeden Montag fand eine Gruppenbesprechung statt, in der alle Teammitglieder ihren aktuellen
Stand prasentierten. Gemeinsam entschieden wir dann, welche Aufgaben weiterverfolgt oder
vorerst pausiert werden sollten. Feste Zeitplane haben wir bewusst vermieden, da sich im
Verlauf oft zeigte, dass diese in der Praxis kaum realistisch waren.

Ab einem gewissen Zeitpunkt hat sich Erik vom Hauptprojekt abgekoppelt, um an der
Integration von PlatformlO zu arbeiten. Ziel war es, das Projekt zu einem wirklich nutzba-
ren Produkt weiterzuentwickeln. Der zeitliche Verlauf dieser Arbeiten ist in Abbildung
dargestellt.

Die Diagramme enthalten ausschlieBlich zeitlich relevante Aspekte, jedoch keine detaillier-

ten Ablaufbeschreibungen oder Programmierfortschritte.
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PlatformIO Integration: muTau-RV32-SoC (Dez 2025)

Abbildung 3.2: Zeitleiste (erstellt mit Mermaid) mit den Commit-Zeiten und Arbeitsschwer-
punkten der PlatformlO-Integration.

Seite 12 von



Kapitel 4

Durchfiihrung

4.1 Bau des Modells

Beim Bau des Modells beziehen wir uns auf unser Endprodukt, nicht auf das vorherige, auf-

gegebene Projekt.

4.1.1 Docker

Um iiberhaupt mit der Entwicklung beginnen zu kénnen, mussten wir zunachst eine Entwick-

lungsumgebung schaffen, die die folgenden Anforderungen erfiillt:

= Sie muss plattformunabhéngig und reproduzierbar sein (damit beide dieselbe Entwick-

lungsumgebung nutzen kdnnen).

= Alle benétigten Tools miissen enthalten und miteinander kompatibel sein (um Abhéan-

gigkeitsfehler zu vermeiden).

» Fir das Endprodukt soll sie einfach zu bedienen und moglichst fehlerunanfallig sein,

damit sie von jedem problemlos verwendet werden kann.

Die Entscheidung fiel uns zunachst nicht leicht, wir standen zwischen Nix und Docker. Nix
hatte den Vorteil gehabt, schneller und einfacher zu bauen, jedoch fehlten viele Pakete der
Toolchain als Nix-Pakete. Daher entschieden wir uns fiir eine Kombination aus Docker und
Makefile. So kann das Projekt mit einfachen CLI-Kommandos gebaut werden, ohne dass man
sich mit Docker weiter beschaftigt haben muss.

Wir entwickelten einen Docker-Container auf Basis von debian-bookworm-slim, um Bloatware
zu vermeiden und den Container schneller zu bauen. Innerhalb des Containers installierten wir
alle benétigten Tools, darunter Python (mit einer virtuellen Umgebung), LiteX, liteX-boards
sowie einige Build-Abhangigkeiten wie meson und jinja2. Anfangs dauerte der Build-Prozess
des Containers jedoch sehr lange, pro Anderung bis zu 30 Minuten. Um dies zu optimieren,
implementierten wir ein Caching-System, teilten den Container in fiinf Stages auf und nutzten

Docker-Args, um verschiedene Stage-Kombinationen gezielt ausfiihren zu kénnen.

13
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4.1.2 Toolchain

Der urspriingliche Plan war, eine Open-Source-Toolchain zu verwenden [3.3] mit yosys als
Routing-Tool sowie nextpnr-himbaechel als Building-Tool fiir den Bitstream, in Kombina-
tion mit apycula und openFPGALoader zum Flashen des Designs.

Es zeigte sich jedoch schnell, dass die Open-Source-Tools nicht optimal mit den LUT-Ressourcen
des Tang Nano 9K umgehen. Dadurch kam es zu fehlerhaften Synthesen, obwohl das Design
grundsatzlich kompatibel war. Wir entschieden uns daher fiir die alternative, geschlossene
Toolchain GOWIN EDA. Das Problem dabei war jedoch, dass fiir die Installation personliche
Daten angegeben werden mussten, was nicht im Sinne unseres Projekts war.

Nach langerer Recherche und Experimenten mit der Open-Source-Toolchain analysierten wir
schlieBlich den Download-Prozess der GOWIN-Webseite und stellten fest, dass der eigentli-
che Download-Link Statisch war. Diese Schwachstelle nutzten wir, um mithilfe des CLI-Tools
curl die Installationsdateien direkt herunterzuladen, ganz ohne Anmeldung. Dieses Verfahren
funktionierte erfolgreich, und wir waren gespannt mit der GOWIN EDA die ersten SoC-Tests
fir den Tang Nano 9K durchfiihren.

4.1.3 SoC

Fir den SoC begaben wir uns zunachst in eine intensive Lernphase. Wir beschaftigten uns
eingehend mit LiteX (das auf Migen basiert) und den internen Strukturen, um zu verstehen,
wie ein solches Projekt aufgebaut ist, welche Moglichkeiten es bietet und wie wir es am sinn-
vollsten nutzen konnen.

Schnell stellten wir fest, dass LiteX nur sehr sparlich dokumentiert ist. Es existieren zwar
Beispiele, diese sind jedoch oberflachlich, unkommentiert und bieten keine tiefere Hilfe zum
Verstandnis der Architektur. AuBerdem waren die Beispielprojekte unstrukturiert, alles befand
sich meist in einer einzigen Datei, was wir fiir unser Projekt vermeiden wollten.

Daher entwickelten wir unsere eigene, logisch aufgebaute Ordnerstruktur, die nach unserer
Einschatzung Ubersichtlicher und wartungsfreundlicher ist (siehe .

Nachdem wir die Basis fiir den SoC geschaffen, diesen mit Verilator simuliert und erfolgreich
getestet hatten, wagten wir den ersten vollstandigen Flash-Versuch auf dem FPGA mit dem
LiteX-BIOS. Zunéachst schien alles in Ordnung, keine Fehler wurden angezeigt. Beim Versuch,
sich via serieller Verbindung mit dem FPGA zu verbinden, traten jedoch Kommunikationsfehler
auf (siehe Kapitel [4.1.4). Diese Probleme konnten wir nach einiger Zeit beheben.

Damit hatten wir einen voll funktionsfahigen SoC, also quasi einen Mikrocontroller, Entwi-
ckelt, genau den Punkt, mit dem andere Projekte normalerweise beginnen. Bald stellten wir
jedoch fest, dass das Programmieren dieses SoCs komplexer war als erwartet. Gleichzeitig er-
kannten wir das groBe Potenzial des Projekts. Unsere nachste Zielsetzung war daher, daraus
ein vollwertiges Produkt zu machen, mit PlatformlO-Integration, sodass jeder den SoC leicht

programmieren konnte. AuBerdem wollten wir ermoglichen, ein RTOS darauf auszufiihren, was
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weitere vorteile fiir die konsumenten bieten wiirde.

Ab diesem Punkt war das urspriingliche Projekt zwar abgeschlossen, doch wir wollten mehr.
Wir starteten zwei neue Teilprojekte: 1. Ein Repository mit Beispielen und Dokumentation,
wie man auf dem SoC unser RTOS Installiert. 2. Eine Integration fiir PlatformlO (work in
progress), da PlatformlO ein Industriestandard ist.

Fur das RTOS entschieden wir uns fiir Zephyr [Zep25a]. Damit der SoC mit dessen Anfor-
derungen kompatibel ist, passten wir das Design entsprechend an. Mithilfe eines kaum doku-
mentierten LiteX-internen Tools gelang es uns schlieBlich, Konfigurationsdateien fiir Zephyr
automatisch zu generieren. Ein vollwertiges Image ist derzeit noch nicht komplett fertiggestellt.
Dariiber hinaus spezialisierten wir unseren SoC auf Signalverarbeitung. Die ldee: Ein FPGA-
Design arbeitet schneller als Software, die darauf ausgefiihrt wird. Daher integrierten wir eine
FFT-(Fast Fourier Transform)-Bibliothek direkt in das SoC-Design.

Das Ergebnis ist ein System, das fiir zeitkritische Anwendungen, etwa in der Forschung, extrem

geringe Latenzzeiten erreicht, nahezu vergleichbar mit einem ASIC.

4.1.4 Serielle Verbindung

Das Problem mit der seriellen Kommunikation war, dass wir keine Verbindung mit den gewahl-
ten Tools herstellen konnten. Die Fehlersuche dauerte einige Zeit, bis wir die Ursache erkannt
und das Problem behoben hatten.

Nachdem die Verbindung schlieBlich funktionierte, erschien beim Start das LiteX-BIOS (siehe

Abbildung .

4.1.5 Website und Marketing

Wie bereits erwahnt, wollten wir unser Projekt zu einem vollwertigen Produkt weiterentwi-
ckeln, das jeder einfach nutzen oder als Grundlage fiir eigene Vorhaben verwenden kann — mit

den in Kapitel beschriebenen Features.

Um das Projekt bekannter zu machen und Interessierten einen Eindruck liber dessen Entste-
hung zu vermitteln, entwickelten wir eine Website. Diese gestalteten wir SEO-konform, sodass

sie von Suchmaschinen wie Google leichter gefunden und auch von Kl-Systemen lber die be-
reitgestellte sitemap.xml erkannt und indexiert werden kann.

Die Website zum Projekt ist unter folgendem Link erreichbar: https: / /erik-donath.github.io/muTau-
RV32-SoC/.

4.1.6 Git, Branches, Reviews und GitHub-Workflow

Um Fehler einfach korrigieren zu kénnen und jederzeit auf den aktuellen Stand des Projekts
zugreifen zu kénnen, entschieden wir uns fiir Git als Versionsverwaltungssystem. Zur Synchro-

nisation der Projektstande, fiir kollaboratives Arbeiten und als Cloud-Backup verwendeten wir
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77 ) 1

Build your hardware, easily!

(c) Copyright 2012-2023 Enjoy-Digital
(c) Copyright 2007-2015 M-Labs

BIOS built on Aug 9 2023 21:08:31
BIOS CRC passed (95341d09)

LiteX git shal: 0fifdea8

== S0C ==

VexRiscv @ 27MHz
WISHBONE 32-bit @ 4GiB
32-bit data

64.0K1B

8.0KiB

4.0M1B

4.0MiB

= Initialization ==
at 0x40000000 (2.0MiB)...
Write: 0x40000000-0x40200000 2.0MiB
Read: 0x40000000-0x40200000 2.0MiB
Memtest OK
Memspeed at @x40000000 (Sequential, 2.0MiB)...
Write speed: 1.4MiB/s
Read speed: 1.3MiB/s

Initializing W25Q32 SPI Flash @0x00000000...
SPI Flash clk configured to 13 MHz
Memspeed at @ (Sequential, 4.0KiB)...
Read speed: 1.4MiB/s
Memspeed at @ (Random, 4.0KiB)...
Read speed: 751.2KiB/s

Abbildung 4.1: Das BIOS, das angezeigt wird, wenn man sich via Serial verbindet und den
Befehl reboot eingibt.

zusatzlich GitHub. Dadurch war sichergestellt, dass jederzeit eine konsistente und aktuelle
Version des Projekts online verfiigbar war.

Durch die Nutzung von Branches hielten wir den main-Branch stets stabil und funktions-
fahig. Fur jeden neuen Entwicklungsschritt oder jedes neue Feature wurde eine eigene Branch
erstellt. Diese Vorgehensweise verhinderte, dass experimentelle Anderungen die stabile Haupt-
version beeintrachtigten, und schuf eine klare Trennung zwischen produktiver Entwicklung und

neuen Funktionen.

Sobald eine Feature-Branch als funktionsfahig galt, nutzten wir das GitHub-Review-System
(siehe z. B. dieses Beispiel). In diesem Workflow stellte Erik jeweils einen Pull Request mit ei-
ner Beschreibung der Anderungen, und Daniel iiberpriifte den Code, testete die Funktionalitat
und gab abschlieBend die Freigabe zum Merge. Auf diese Weise entstand ein klar strukturier-
tes, nachvollziehbares und dauerhaft wartbares Projekt. Zudem ermoglichte diese Arbeitsweise,
dass beide Teammitglieder parallel an unterschiedlichen Bereichen arbeiten konnten, ohne dass

Fortschritte verloren gingen oder Missverstandnisse tiber den Projektstand entstanden.

Um das Projekt weitgehend zu automatisieren, richteten wir zusatzlich mehrere GitHub Ac-

tions Workflows ein. Diese fiihren diverse Aufgaben automatisch aus:

» Build: Baut das Projekt automatisch bei jedem Commit oder Release und generiert die
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Bitstream-Dateien.
» Pages: Veroffentlicht die Projektwebseite automatisch iiber GitHub Pages.

» CodeQL: Fiihrt eine statische Codeanalyse durch, um potenzielle Sicherheitsliicken oder

Fehler frithzeitig zu erkennen.

Durch diesen automatisierten Prozess konnen die erzeugten Bitstreams direkt als GitHub-
Releases bereitgestellt werden. Dadurch missen Nutzer, die sich nur fiir die fertigen FPGA-
Bitstreams interessieren, das Repository nicht klonen oder selbst bauen, sie konnen die fertigen

Builds bequem herunterladen.
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Implementierung

5.0.1 Architekturiibersicht (Hardware)

Das Projekt ist modular aufgebaut und besteht im Wesentlichen aus folgenden Teilen:

Die Hardwarebeschreibung wird mit Migen/LiteX in Python geschrieben; daraus erzeugt
der Builder die FPGA-Bitstreams (Gowin-Toolchain in diesem Projekt). Die Firmware nutzt
die von LiteX generierten Header (CSR-Definitionen), um auf die Peripherie zuzugreifen.

boards/ — Board-spezifische Plattformdefinitionen (Pinout, Ressourcen).
cores/ — Wiederverwendbare Hardware-Cores (z. B. HyperRAM /HyperBus).
soc/ — SoC-Definitionen und Builder-Logik (Python, Migen/LiteX).
firmware/ — Bare-Metal-Firmware-Targets (z. B. BIOS, einfache Beispiele).
docs/, pages/ — Dokumentation / GitHub Pages.

docker/, Makefile — Build-Umgebung und Automatisierung.

5.0.2 Wichtige Softwarekomponenten

Im Folgenden werden die zentralen Python-Module aus soc/ erklart, die das System orche-

strieren.

SoC-Konfiguration (SoCConfig)

Die SoCConf ig-Dataclass fasst die build- und board-spezifischen Parameter zusammen (Board-

name, Takt, RAM-Optionen, CPU-Konfiguration, Pfade). Wichtige Aspekte:

Standard-Board: tang_nano_9k

Sys-Clock-Default: 27 MHz
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= Wahl: externe RAM-Nutzung oder SRAM-only
» Output-Pfad: build/<board>

Beispiel (Auszug): — |A.7|

Basis-SoC (BaseSoC)

BaseSoC (erbt von litex.soc.integration.soc_core.SoCCore) setzt das SoC zusam-

men:

= Initialisiert Clock-/Reset-Generator (CRG).

Wahlt CPU-Typ und -Variante (z. B. VexRiscv).

Fugt Main Memory hinzu (falls extern nutzbar).

Lasst das Board proprietare Peripherie hinzufiigen (GPIOs, UART, LEDs, etc.).

Ausschnitt: [A.6]

Clocking / CRG

Die Clock- und Reset-Logik ist in soc/clocking. py implementiert. Fir Gowin GW1N/GW1NR
Devices wird ein GW1IN-PLL genutzt, ansonsten ein einfacher Pass-Through (sofern die Ein-
gangsfrequenz der Ziel-Frequenz entspricht).

Beispiel (Kernlogik) — |A.5
Builder / Build-Flow

Der Build-Entry-Point ist soc/builder.py. Er erzeugt ein BaseSoC-Objekt, bindet LiteX's
Builder ein und bietet Optionen zum Bauen, Flashen und Laden (SRAM):

Wesentliche Funktionen:

» builder.build() erzeugt den FPGA-Bitstream (Gowin-Tooling).

» prog.flash(...) und prog.load_bitstream(...) zum Flashen bzw. Laden.
= Ausgabe der CSR-Map (csr.csv) in den Output-Ordner.

Ausschnitt — [A4]
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5.0.3 Firmware / Software-Interaktion

LiteX generiert beim SoC-Build Header- und Linker-Dateien (unter build/<board>/software/include/ge:
Diese enthalten CSR-Definitionen (Control and Status Registers) und Regions-Definitionen

(z.B. regions.1d), die Firmware bendtigt:

» generated/csr.h: Helper-Funktionen / Makros zum Lesen/Schreiben von Peripherie-
Registers (z. B. LEDs, UART).

» generated/regions.1ld: Memory-Map (SRAM, Flash) fiir den Linker.

» variables.mak: enthalt CFLAGS, LDFLAGS, LIBS fir Firmware-Build (wird von Firmware-
Build-Skripten gelesen).

Der typische Firmware-Start besteht aus:
1. Start-up-Assembly (crt0) initialisiert Stack, BSS, ggf. kopiert .data.
2. main() benutzt die LiteX-generierten CSR-APIs, um Peripherie zu steuern.

3. Firmware wird als BIOS oder als Kernel iiber SerialBoot/Flash geladen.

5.0.4 Beispiel: minimale Firmware (aus dem Baseline-Repository)

Eine typische Demo-Firmware toggelt LEDs tiber die CSR-API — [A.2]

Architekturiibersicht (Software)

Die Firmware ist ein kleines Bare-Metal-Programm fiir einen RV32-Kern (VexRiscv tiber LiteX).

Die wichtige Idee:

1. LiteX (in soc/) erzeugt Board-/SoC-spezifische Header und Linker-Regionen (unter

software/include/generated).

2. Das Firmware-Projekt kompiliert gegen diese generierten Header (CSR-Definitionen,

Adressen).
3. Die Startsequenz (crt0.S) richtet die Laufzeitumgebung ein (Stack, BSS, .data).

4. main.c verwendet die generierten CSR-Access-Funktionen (z.B. leds_out_write) um

die Hardware zu steuern.

5. Linker-Skript (1inker.1d) sorgt dafiir, dass alle Segmente im SRAM liegen (keine ex-
terne Flash-Nutzung).
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Start-Up: src/crt0.S

Wesentliche Aufgaben:
= Stackpointer initialisieren (typischer Stack-Top: SRAM-Start + Offset).

BSS-Bereich mit Nullen fullen.

Optional .data von ROM nach RAM kopieren (fir SRAM-only Konfiguration evtl. bereits
korrekt).

= main aufrufen: falls main zuriickkehrt, Endlosschleife.

Beispiel (aus src/crt0.8) — |A.3]

5.0.5 Anwendungs-Entry: src/main.c

Das kleine C-Programm demonstriert direkte Nutzung eines LiteX-generierten CSR-APlIs. Es
inkludiert generated/csr.h — diese Header wird von LiteX erzeugt und enthalt Register-
/ Zugriffs-Makros/-Funktionen fiir die SoC-Peripherie.

Code (aus src/main.c) — |A.2
Erlauterung:

» generated/csr.h definiert Funktionen wie leds_out_write(uint32_t) zum Schrei-

ben in die LED-Register (per LiteX generiert).
» Die Endlosschleife wechselt LED-Muster mit einfachen Software-Delays.

= |n einem echten Projekt wiirden hier zusatzlich Initialisierung, Interrupt-Setup oder Pe-

ripheriebehandlung stattfinden.

5.0.6 Linker-Skript: linker.1ld

Das Linker-Skript nutzt LiteX-generierte Definitionsdateien, um Adresse/GréBe des SRAMs
(und ggf. anderer Regionen) zu benutzen. Es legt alle Segment-Aliase auf SRAM fest, damit
die Firmware komplett im RAM liegt.

Auszug —
Wirkung:

= Alle Abschnitte werden an Adressen gemappt, die in generated/regions.1d definiert
sind (von LiteX bereitgestellt).

» Dadurch ist ein nahtloses Zusammenspiel zwischen LiteX-Hardware-Map und Firmware

moglich.
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5.0.7 Build-Konfiguration: CMakeLists.txt und Toolchain
Hauptaufgaben von CMake:
= Einlesen der LiteX-Variablen (z. B. CFLAGS, LDFLAGS, LIBS) aus variables.mak.
» Zusammensetzen der Compiler-/Linker-Flags (z. B. -march=rv32i -mabi=ilp32).
= Einbinden des localen linker.1d und Verhindern von Standard-Libs (bare-metal).

Toolchain (cmake/toolchain-riscv.cmake) setzt cross-compiler Pfade:

[

# cmake/toolchain-riscv.cmake
set (CMAKE_SYSTEM_NAME Generic)
set (CMAKE _SYSTEM PROCESSOR riscv32)

set (CMAKE_C_COMPILER /opt/riscv-toolchain/bin/riscv64-unknown-elf-gcc)
set (CMAKE_CXX_COMPILER /opt/riscv-toolchain/bin/riscv64-unknown-elf-g++)

5.0.8 Zusammenspiel mit LiteX (generated headers)

Wichtig ist, dass LiteX vor dem Firmware-Build ausgefiihrt wurde, damit die Dateien unter
LITEX_BUILD DIR/software/include/generated vorhanden sind. Diese generierten Da-

teien enthalten:
» csr.h / andere Header mit Register-Defines und Helper-Funktionen.

» regions.ld, output_format.ld, variables.mak fiir Linker- und Build-Parameter.

5.1 Test

Wie bereits in Abbildung [3.1] dargestellt, wurden mehrere Tests durchgefiihrt, um die korrekte
Funktionsweise des SoCs sicherzustellen. Dazu zahlten unter anderem einfache Schreibtests in
CSRs (Control and Status Register) innerhalb der Verilatorsimulation, aber auch praktische
Experimente direkt auf dem Board, etwa durch kleine Blinky-Programme, einfache Assembler-

Befehle und verschiedene BIOS-Kommandos.

Seite 22 von



Kapitel 6

Projektabschluss

6.1 Fazit

Das urspriingliche Ziel des Projekts haben wir nicht vollstandig erreicht. Unser Plan, einen
eigenen SoC bzw. eine CPU von Grund auf in VHDL zu entwickeln, lieB sich in der vorgese-
henen Zeit nicht umsetzen. Wie jedoch aus dieser Dokumentation hervorgeht, war auch das
alternative Projekt wesentlich umfangreicher, als zuvor angenommen. Wir haben uns anfangs
deutlich Gberschatzt, konnten jedoch, trotz Zeitverzégerung — ein Ergebnis schaffen, das sich
sehen lassen kann.

Am Ende entstand ein voll funktionsfahiges Produkt, das sich keineswegs hinter anderen
Projekten verstecken muss. Mit etwas weiterer Entwicklung konnte es sogar marktreif sein, da
unser SoC langfristig eine echte Alternative zu Mikrocontrollern wie Arduino oder gangigen
MCUs darstellt (sobald die Integration vollstandig abgeschlossen ist). Dariiber hinaus haben
wir unser Produkt durch eine integrierte FFT-Schaltung erweitert, die fir Signalverarbeitung
genutzt werden kann, direkt in Hardware, ohne zusatzliche Bibliotheken.

Ebenso ist es uns gelungen, das Projekt strukturiert und im Team organisiert anzugehen,
eine ausfiihrliche Dokumentation zu erstellen und sogar eine begleitende Website zu veroffent-
lichen. Trotz aller Erfolge miissen wir jedoch einrdumen, dass wir uns mit diesem Vorhaben
eindeutig libernommen haben. Wir haben unzéhlige Stunden auBerhalb der Schule daran gear-
beitet — und mittlerweile fiihlt sich das Projekt fast an wie unser gemeinsames ,,Kind", das wir
tiber Monate hinweg groBgezogen haben. Und das alles fiir gerade einmal eine Note in einem
Nebenfach.

6.2 Ausblick

6.2.1 Weitere ldeen

Da unser Projekt bzw. Produkt bislang noch nicht zu 100 % fertiggestellt ist, ware der erste

Schritt, es vollstandig abzuschlieBen. AnschlieBend gibt es jedoch zahlreiche weitere Ideen, die
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wir gern umsetzen wiirden.

Da sich das Projekt besonders an Einsteiger und Hobbyanwender richtet, ware ein wichti-
ger nachster Schritt, den Installationsprozess zu vereinfachen. Aktuell erfolgt das Flashen des
FPGAs, indem dieser an einen Docker-Container gemountet wird. Uber diesen Container wird
das Board mit einem Makefile beschrieben, ein Prozess, der fiir Anfanger zu komplex sein
kann. Eine sinnvolle Erweiterung ware daher ein Web-Installer, der mittels JTAG-WebUSB
direkt Gber den Browser die Bitstreams auf das FPGA |adt.

Eine weitere Idee ist die Erweiterung der integrierten Signalverarbeitungstools. Ne-
ben der FFT konnten zusatzliche Filter, etwa ein Butterworth-Filter, implementiert werden.
AuBerdem ware ein weiterer SoC interessant, der sich speziell an Kryptographie-Anwendungen

richtet, mit geeigneten Hardwaremodulen zur Unterstiitzung solcher Aufgaben.

Dariiber hinaus konnten wir ein ganz neues Produkt entwickeln, ahnlich wie ein Xilinx-
SoC. Dabei wiirden wir unser bestehendes Projekt erweitern, indem wir einen AXI-Bus an
einige Pins anbinden, der zu einem weiteren FPGA fiihrt. Uber den Device Tree eines RTOS
konnte dieser Bus mit den CSRs verbunden werden, wodurch es moglich ware, einen zweiten
FPGA dynamisch tiber HDL zu konfigurieren, wahrend er gleichzeitig vom SoC gesteuert wird.
Dies wiirde die Moglichkeiten unseres Systems erheblich erweitern.

Auch ein weiteres lohnenswertes Ziel ware, den SoC so anzupassen, dass darauf Linux

lauffahig ist, was ihn zu einem kleinen, vollwertigen Einplatinencomputer machen wiirde.

Zudem konnte unser aktuelles PWM-Protokoll verbessert werden, da es derzeit auf einem

Workaround basiert und noch keine echte PWM-Implementierung darstellt.

6.3 Code

Da es aufgrund der GroBe des Projekts und der vielen Submodule zu aufwendig ware, den ge-
samten Code in eine einzelne ZIP-Datei zu packen, und dies auBerdem die Speicherlimits von
Moodle oder IServ Uberschreiten wiirde — stellen wir die Quellcodes stattdessen tber GitHub
zur Verfliigung. Dort konnen die Projekte einzeln eingesehen oder als ZIP-Dateien herunterge-

laden werden.

https://github.com/Erik-Donath /muTau-Zephyr
https://github.com/Erik-Donath/muTau-RV32-SoC
https://github.com/Erik-Donath /muTau-Barebone
https://github.com/Erik-Donath /muTau-PlatformlO
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Anhang A

Anhang

A.1 Linker Script

/* linker.ld - SRAM-resident firmware for muTau-RV32-SoC */

/* Use LiteX-generated memory layout and output format. */
INCLUDE generated/regions.1ld
INCLUDE generated/output_format.ld

/* Use sram (defined in regions.ld) for everything */
REGION_ALIAS("REGION_TEXT", sram);
REGION_ALIAS("REGION_RODATA", sram);

REGION ALIAS("REGION DATA", sram);
REGION_ALTAS("REGION_BSS", sram);

REGION_ ALIAS("REGION_STACK", sram);

SECTIONS

{
.text

_ftext = .;
KEEP(*(.init))
*(.text .text.*)
KEEP (*(.fini))
_etext = .,

} > REGION TEXT

(data, bss, stack)
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A.2 main.c

// src/main.c

#include <generated/csr.h>

int main(void) {
while (1) {
leds _out_write (OxAA);
for(int i = 0; i < 1000000; i++);
leds _out _write (0x55);
for(int i1 = 0; i < 1000000; i++);
}

return O;

A.3 crt0.S

/* src/crt0.S - Minimal startup code for VexRiscv on LiteX */

.section .init, "ax"

.global _start

_start:
/* Set stack pointer to top of SRAM (0x10000000 + 0x2000 = 0x10002000) */
1i sp, 0x10002000

/* Clear the BSS segment */
la tO, _fbss
la t1, _ebss
bss_loop:
bgeu t0, tl1, bss_done
sw zero, 0(t0)
addi tO, tO, 4
j bss_loop

bss_done:
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/* Copy data section from ROM to RAM if needed (optional for SRAM-only) */

N

la t0, _fdata
la t1, _edata
la t2, _fdata /* In SRAM-only config, data is already in place */

data_loop:
bgeu t0, tl1l, data_done
1w t3, 0(t2)
sw t3, 0(t0)

addi tO, tO, 4
addi t2, t2, 4
j data_loop

data_done:

/* Call main */

call main

halt:
j halt

A.4 load csr

# soc/builder.py

from litex.soc.integration.builder import Builder

def build_soc(config: SoCConfig, build=False, flash=False, load=

False):
soc = BaseSoC(config)
builder = Builder (soc, output_dir=config.output_path, csr_csv

=f"{config.output_pathl}/csr.csv")

if build:
builder.build ()
if flash:
prog = soc.platform.create_programmer ()
bitstream = builder.get_bitstream_filename (mode="flash",
ext=".fs")
prog.flash(0, bitstream)
bios = builder.get_bios_filename ()
prog.flash (0x40000, bios, external=True)
if load:
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prog = soc.platform.create_programmer ()
bitstream = builder.get_bitstream_filename (mode="sram")
prog.load_bitstream(bitstream)

return builder

def main():
# Argumentparsing: --board, --build, --flash, --load,
# Erstellt SoCConfig und ruft build_soc auf

A.5 kernlogik

# soc/clocking.py
from litex.soc.cores.clock.gowin_gwln import GWINPLL
class ClockDomainGenerator (LiteXModule) :
def __init__(self, platform, sys_clk_freq, input_clk_name="
clk27", input_clk_freq=27e6):
self.rst = Signal ()
self.cd_sys = ClockDomain ()

clk_in platform.request (input_clk_name)

reset_btn platform.request ("user_btn", 0)
if hasattr(platform, "devicename"):
self. _create_gowin_pll(platform, clk_in, reset_btn,
input_clk_freq, sys_clk_freq)
else:

raise NotImplementedError (...)

def _create_gowin_pll(self, platform, clk_in, reset_btn,
input_freq, output_freq):
dev = platform.devicename
if dev.startswith("GWIN") or dev.startswith("GWINR"):
self .pll = GWINPLL(devicename=platform.devicename,
device=platform.device)
self.comb += self.pll.reset.eq(~reset_btn)
self .pll.register_clkin(clk_in, input_freq)
self .pll.create_clkout(self.cd_sys, output_freq)
else:
self.comb += self.cd_sys.clk.eq(clk_in)

self.comb += self.cd_sys.rst.eq(~reset_btn)
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A.6 BaseSoC

# soc/base.py
from litex.soc.integration.soc_core import SoCCore
class BaseSoC(SoCCore):

def __init__(self, config):

self .soc_config = config
board = get_board(config.board_name)
platform = board.create_platform()

self.crg ClockDomainGenerator (

platform=platform,

sys_clk_freq=config.sys_clk_fregq,

input_clk_name=getattr (board, "input_clk_name",
platform.default_clk_name),

input_clk_freq=getattr(board, "input_clk_freq",

config.sys_clk_freq),

)

SoCCore.__init__(
self ,
platform,
config.sys_clk_freq,
cpu_type=config.cpu_type,
cpu_variant=config.cpu_variant,
cpu_reset_address=config.cpu_reset_address,
integrated_rom_size=config.integrated_rom_size,
integrated_sram_size=config.integrated_sram_size,
ident=f"RISC-V_,SoC_on,{board.name}",
ident_version=True,

)

if not self.integrated_main_ram_size and config.
with_external_ram:

board.add_main_memory(self, platform, config)

board.add_peripherals(self, platform, config)

A.7 soconfig
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# soc/config.py

from dataclasses import dataclass

@dataclass

class SoCConfig:
board_name: str = "tang_nano_9k"
sys_clk_freq: float = 27e6
with_external_ram: bool = True

integrated_rom_size: int = 128 x 1024

integrated_sram_size: int = 8 *x 1024
external_ram_size: int = 4 *x 1024 *x 1024
cpu_type: str = "vexriscv'

cpu_variant: str = "standard"
build_name: str = "soc"

output_dir: str = "build"

#

@property

def output_path(self):
return f"{self.output_dir}/{self.board_namel}"

A.8 Quellen
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